Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2019
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2019
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5281/zenodo...
Article . 2019
License: CC BY
Data sources: Sygma
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

EGU.2019: "Volcano-Independent Seismic Recognition: detecting and classifying events of a given volcano using data from others"

Authors: Cortés, Guillermo; Carniel, Roberto; Lesage, Philippe; Mendoza, M. Ángeles; Lucia, Ivo Della;

EGU.2019: "Volcano-Independent Seismic Recognition: detecting and classifying events of a given volcano using data from others"

Abstract

Presentation of the milestone results achieved by the VULCAN.ears EU-funded project at the EGU.2019 General Assembly, international conference under the title: ---------------------------------------------------------------------------------------------------------------------------- "Volcano-Independent Seismic Recognition: detecting and classifying events of a given volcano using data from others" Modern seismic networks provide a huge amount of data received in real-time, being impossible the manual identification of relevant events useful to monitor the activity of the volcano. Thus, many volcano observatories are interested in tools to perform an online, automatic analysis of the seismic activity. Machine Learning area provides various of Volcano-Seismic Recognition (VSR) systems designed to classify seismic events in real-time. However, only a few approaches can also detect them in a continuous data streams. Most of those VSR systems are based on the 2-step supervised paradigm: A training database (X-DB) of a given volcano ’X’ is prepared with hundreds of events manually detected and classified according to their physical origin. Statistical models are built analysing this DB, and are later used to automatically identify events in new data recorded at the volcano X. This supervised procedure is the major drawback to achieve a fast deployment of a VSR system for another volcano Y, as the preparation of its own Y-DB takes considerable time, and requires qualified operators and previous recordings, which is difficult for volcanoes without recent activity or which haven’t been monitored. In order to overcome these limitations, the EU-funded project ’VULCAN.ears’ focused on real-time, Volcano-Independent VSR (VI.VSR) approaches. It proposes alternative solutions based on state-of-the-art technologies as universal DBs and models, waveform standardisation and parallel architectures. Recent results obtained by mixing DBs from Popocatépetl, Colima, Deception and Arenal active volcanoes will be presented. We apply VULCAN.ears technologies to evaluate VSR systems on joint DBs built with data of several volcanoes. We also use volcano-independent models to automatically classify events of another volcano, analysing how the recognition accuracy varies as the training DB becomes more complex. All tests are carried out by an easy to use, user-friendly graphical application (geoStudio). All these achievements produce new insights useful to redesign the next-generation, portable and robust VSR systems. ---------------------------------------------------------------------------------------------------------------------------- The *.zip file includes both, the abstract communication and the poster presentation. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No.[749249] (VULCAN.ears)

Keywords

Machine Learning, Volcano seismology, Eruption Forecasting, Hazard Assessment, Pattern Recognition, VULCAN.ears, geoStudio, liveVSR, Volcano Seismic Recognition (VSR), pyVERSO

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 4
    download downloads 1
  • 4
    views
    1
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
4
1
Green
Related to Research communities