Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computer Methods and...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Computer Methods and Programs in Biomedicine
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RUIdeRA
Article . 2024
License: CC BY NC ND
Data sources: RUIdeRA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BULERIA
Article
License: CC BY
Data sources: BULERIA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BULERIA
Article . 2022
License: CC BY
Data sources: BULERIA
DBLP
Article
Data sources: DBLP
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Diffeomorphic transforms for data augmentation of highly variable shape and texture objects

Authors: Vállez Enano, Noelia; Bueno García, María Gloria; Déniz Suárez, Óscar; Blanco Lanza, Saúl;

Diffeomorphic transforms for data augmentation of highly variable shape and texture objects

Abstract

Training a deep convolutional neural network (CNN) for automatic image classification requires a large database with images of labeled samples. However, in some applications such as biology and medicine only a few experts can correctly categorize each sample. Experts are able to identify small changes in shape and texture which go unnoticed by untrained people, as well as distinguish between objects in the same class that present drastically different shapes and textures. This means that currently available databases are too small and not suitable to train deep learning models from scratch. To deal with this problem, data augmentation techniques are commonly used to increase the dataset size. However, typical data augmentation methods introduce artifacts or apply distortions to the original image, which instead of creating new realistic samples, obtain basic spatial variations of the original ones.We propose a novel data augmentation procedure which generates new realistic samples, by combining two samples that belong to the same class. Although the idea behind the method described in this paper is to mimic the variations that diatoms experience in different stages of their life cycle, it has also been demonstrated in glomeruli and pollen identification problems. This new data augmentation procedure is based on morphing and image registration methods that perform diffeomorphic transformations.The proposed technique achieves an increase in accuracy over existing techniques of 0.47%, 1.47%, and 0.23% for diatom, glomeruli and pollen problems respectively.For the Diatom dataset, the method is able to simulate the shape changes in different diatom life cycle stages, and thus, images generated resemble newly acquired samples with intermediate shapes. In fact, the other methods compared obtained worse results than those which were not using data augmentation. For the Glomeruli dataset, the method is able to add new samples with different shapes and degrees of sclerosis (through different textures). This is the case where our proposed DA method is more beneficial, when objects highly differ in both shape and texture. Finally, for the Pollen dataset, since there are only small variations between samples in a few classes and this dataset has other features such as noise which are likely to benefit other existing DA techniques, the method still shows an improvement of the results.

Country
Spain
Keywords

Biotecnología, Pollen classification, Data augmentation, Databases, Factual, Algae classification, Taxon life cycle, Ecología. Medio ambiente, Diffeomorphism transforms, Humans, Neural Networks, Computer, Glomeruli classification, Diffeomorphism transform, 2417.07 Algología (Ficología), Data Management

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
hybrid