Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Applied Superconductivity
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of Flux-Coupling-Type SFCLs for Enhancing Interconnectivity of Multiple Microgrid Clusters Under Fault Conditions

Authors: Lei Chen; Xinyi Deng; Meng Ding; Hongkun Chen; Guocheng Li; Yanhong Li; Xuefeng Qiao; +3 Authors

Investigation of Flux-Coupling-Type SFCLs for Enhancing Interconnectivity of Multiple Microgrid Clusters Under Fault Conditions

Abstract

Building multiple microgrid (multi-MG) clusters is conducive to accessing high penetration of renewable generations, consuming electric energies locally, and reducing operating losses. Nevertheless, it causes a challenge that the interconnectivity of multi-MG clusters may be seriously affected by short-circuit faults. To figure out the issue, this paper puts forward a solution of using flux-coupling-type superconducting fault current limiters (SFCLs), which are positioned at the points of common coupling (PCCs) among the multi-MG clusters and the distribution system. Considering the power exchange and balance under faults, the interconnectivity characteristics of the multi-MG clusters are theoretically analyzed, and the potential actions of the SFCLs to boost the interconnectivity are expounded. Using MATLAB, a modified IEEE 13-node distribution system containing multi-MG clusters and flux-coupling-type SFCLs is modeled, and different fault scenarios are simulated to assess the efficacy and suitability of the proposed solution. From the findings, the SFCLs can very usefully relieve the power fluctuation and mitigate the PCC voltage drop for the multi-MG clusters. Not only the operation of tripping off the multi-MG clusters is efficaciously avoided, but also a stronger power support capability withstanding the fault rush is appreciatively obtained.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!