Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Vibration Characterization and Control of Miniature Stirling-Cycle Cryocoolers for Space Application

Authors: D. L. Johnson; V. Kotsubo; Ronald G. Ross;

Vibration Characterization and Control of Miniature Stirling-Cycle Cryocoolers for Space Application

Abstract

A number of near-term precision space-science instruments have baselined the use of miniature long-life space Stirling-cycle cryocoolers. In support of these instruments, JPL is conducting an extensive cooler characterization test and analysis program focused at developing special sensitive performance measurement techniques and identifying means of improving cooler performance. This paper provides a summary overview of the vibration characteristics of split Stirling cryocoolers of the Oxford type and describes means being developed to achieve vibration levels consistent with the exacting requirements of sensitive infrared spectrometer instruments currently under development for NASA applications. A key emphasis of the paper is on exploring both active and passive means of reducing the residual upper harmonics of the drive frequency that remain with nulled back-to-back compressor and displacer units. Vibration supression results, measured with JPL’s unique 6-degree-of-freedom force dynamometer, are presented for the 80K Stirling cooler manufactured by British Aerospace.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 1%
Top 10%
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!