Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Controlled Electrodeposition of Photoelectrochemically Active Amorphous MoSx Cocatalyst on Sb2Se3 Photocathode

Authors: Jeiwan Tan; Wooseok Yang; Yunjung Oh; Hyungsoo Lee; Jaemin Park; Jooho Moon;

Controlled Electrodeposition of Photoelectrochemically Active Amorphous MoSx Cocatalyst on Sb2Se3 Photocathode

Abstract

Amorphous molybdenum sulfide (a-MoS x) is a promising hydrogen evolution catalyst owing to its low cost and high activity. A simple electrodeposition method (cyclic voltammetry) allows uniform formation of a-MoS x films on conductive surfaces. However, the morphology of a-MoS x deposited on a TiO2/Sb2Se3 photocathode could be modulated by varying the starting potential. The cathodically initiated a-MoS x showed conformal filmlike morphology, whereas anodic initiation induced inhomogeneous particulate deposition. The filmlike morphology of a-MoS x was subjected to catalyst activation, which improved the photocurrent density and reduced the charge-transfer resistance at the semiconductor/electrolyte interface, as compared to that of its particulate counterpart. X-ray photoelectron spectroscopy confirmed that different chemical states of a-MoS x (photoelectrochemically active sites) were developed on the basis of the electrodeposited a-MoS x morphology. The research provides an effective approach for uniformly depositing cost-effective a-MoS x on nanostructured photoelectrodes, for photoelectrochemical water splitting.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    56
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
56
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!