Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermodynamics of Liquid Mixtures of Xenon with Alkanes: (Xenon + Ethane) and (Xenon + Propane)

Authors: Eduardo J. M. Filipe; Edmundo J. S. Gomes de Azevedo; Luís F. G. Martins; Virgílio A. M. Soares; Jorge C. G. Calado; Clare McCabe; George Jackson;

Thermodynamics of Liquid Mixtures of Xenon with Alkanes: (Xenon + Ethane) and (Xenon + Propane)

Abstract

Total vapor pressures for liquid mixtures of xenon + ethane at 161.40 and 182.34 K and of xenon + propane at 161.40, 182.34, and 195.49 K have been measured. Both systems show negative deviations from Raoult's law at all temperatures. The corresponding excess molar Gibbs energies ( ) have been calculated from the vapor pressure results. Liquid molar volumes have also been measured for both mixtures at 161.40 K, leading to calculated excess molar volumes ( ) which are negative in all cases. Additionally, the excess molar enthalpies ( ) for the xenon + ethane system have been determined directly using a batch calorimeter and found to be negative. Xenon + ethane is thus the simplest system which exhibits negative values for all three major excess molar functions. The results were interpreted using the statistical associating fluid theory for potentials of variable attractive range (SAFT-VR). The theory is able to predict the phase behavior of both systems in close agreement with the experimental results. It ...

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!