
In this paper, we consider half-space domains (semi-infinite in one of the dimensions) and strip domains (finite in one of the dimensions) in real Euclidean spaces of dimension at least 2. The Szego reproducing kernel for the space of monogenic and square integrable functions on a strip domain is obtained in closed form as a monogenic single-periodic function, viz a monogenic cosecant. The relationship between the Szego and Bergman kernel for monogenic functions in a strip domain is explicitated in the transversally Fourier transformed setting. This relationship is then generalised to the polymonogenic Bergman case. Finally, the half-space case is considered specifically and the simplifications are pointed out.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
