
arXiv: 0806.4160
The first goal of this survey paper is to argue that if orbifolds are groupoids, then the collection of orbifolds and their maps has to be thought of as a 2-category. Compare this with the classical definition of Satake and Thurston of orbifolds as a 1-category of sets with extra structure and/or with the "modern'' definition of orbifolds as proper étale Lie groupoids up to Morita equivalence. The second goal is to describe two complementary ways of thinking of orbifolds as a 2-category: (1) the weak 2-category of foliation Lie groupoids, bibundles and equivariant maps between bibundles and (2) the strict 2-category of Deligne-Mumford stacks over the category of smooth manifolds.
Mathematics - Differential Geometry, Differential Geometry (math.DG), FOS: Mathematics
Mathematics - Differential Geometry, Differential Geometry (math.DG), FOS: Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 48 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
