
arXiv: 1507.04603
For millimeter-wave (mmWave) massive MIMO systems, the codebook-based analog beamforming (including transmit precoding and receive combining) is usually used to compensate the severe attenuation of mmWave signals. However, conventional beamforming schemes involve complicated search among pre-defined codebooks to find out the optimal pair of analog precoder and analog combiner. To solve this problem, by exploring the idea of turbo equalizer together with tabu search (TS) algorithm, we propose a Turbo-like beamforming scheme based on TS, which is called Turbo-TS beamforming in this paper, to achieve the near-optimal performance with low complexity. Specifically, the proposed Turbo-TS beamforming scheme is composed of the following two key components: 1) Based on the iterative information exchange between the base station and the user, we design a Turbo-like joint search scheme to find out the near-optimal pair of analog precoder and analog combiner; 2) Inspired by the idea of TS algorithm developed in artificial intelligence, we propose a TS-based precoding/combining scheme to intelligently search the best precoder/combiner in each iteration of Turbo-like joint search with low complexity. Analysis shows that the proposed Turbo-TS beamforming can considerably reduce the searching complexity, and simulation results verify that it can achieve the near-optimal performance.
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 65 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
