Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Transportation Resea...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Transportation Research Part B Methodological
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach

Authors: Agachai Sumalee; Zhi-Chun Li; Zhi-Chun Li; Hong Kam Lo; William H. K. Lam; Paramet Luathep; Paramet Luathep;

Global optimization method for mixed transportation network design problem: A mixed-integer linear programming approach

Abstract

This paper proposes a global optimization algorithm for solving a mixed (continuous/discrete) transportation network design problem (MNDP), which is generally expressed as a mathematical programming with equilibrium constraint (MPEC). The upper level of the MNDP aims to optimize the network performance via both expansion of existing links and addition of new candidate links, whereas the lower level is a traditional Wardrop user equilibrium (UE) problem. In this paper, we first formulate the UE condition as a variational inequality (VI) problem, which is defined from a finite number of extreme points of a link-flow feasible region. The MNDP is approximated as a piecewise-linear programming (P-LP) problem, which is then transformed into a mixed-integer linear programming (MILP) problem. A global optimization algorithm based on a cutting constraint method is developed for solving the MILP problem. Numerical examples are given to demonstrate the efficiency of the proposed method and to compare the results with alternative algorithms reported in the literature.

Keywords

Mixed-integer linear programming, 000, Mixed network design, Global optimization, Discrete network design, Network design problem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    182
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
182
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!