Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Industria...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Industrial Engineering International
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EconStor
Article . 2019
License: CC BY
Data sources: EconStor
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phase II monitoring of multivariate simple linear profiles with estimated parameters

Authors: Yazdi, Ahmad Ahmadi; Hamadani, Ali Zeinal; Amiri, Amirhossein;

Phase II monitoring of multivariate simple linear profiles with estimated parameters

Abstract

Abstract In some applications of statistical process monitoring, a quality characteristic can be characterized by linear regression relationships between several response variables and one explanatory variable, which is referred to as a “multivariate simple linear profile.” It is usually assumed that the process parameters are known in Phase II. However, in most applications, this assumption is violated; the parameters are unknown and should be estimated based on historical data sets in Phase I. This study aims to compare the effect of parameter estimation on the performance of three Phase II approaches for monitoring multivariate simple linear profiles, designated as MEWMA, MEWMA_3 and $${\text{MEWMA}}/\chi^{2}$$ MEWMA / χ 2 . Three metrics are used to accomplish this objective: AARL, SDARL and CVARL. The superior method may be different in terms of the AARL and SDARL metrics. Using the CVARL metric helps practitioners make reliable decisions. The comparisons are carried out under both in-control and out-of-control conditions for all competing approaches. The corrected limits are also obtained by a Monte Carlo simulation in order to decrease the required number of Phase I samples for parameter estimation. The results reveal that parameter estimation strongly affects the in-control and out-of-control performance of monitoring approaches, and a large number of Phase I samples are needed to achieve a parameter estimation that is close to the known parameters. The simulation results show that the MEWMA and $${\text{MEWMA}}/\chi^{2}$$ MEWMA / χ 2 methods perform better than the MEWMA_3 method in terms of the CVARL metric. However, the superior approach is different in terms of AARL and SDARL.

Related Organizations
Keywords

Industrial engineering. Management engineering, ddc:650, Estimation effect, Estimation efect, T55.4-60.8, Average run length, Phase II analysis, Profile monitoring, Multivariate simple linear profiles, Multivariate simple linear profles, Profle monitoring, Statistical process monitoring

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
gold