Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

THE USE OF CONFOCAL LASER SCANNING MICROSCOPY TO ASSESS THE POTENTIAL SUITABILITY OF 3D SCAFFOLDS FOR TISSUE REGENERATION, BY MONITORING EXTRA‐CELLULAR MATRIX DEPOSITION AND BY QUANTIFYING CELLULAR INFILTRATION AND PROLIFERATION

Authors: Allan, Iain; Shevchenko, Rostislav; Rowshanravan, B.; Karabanova, B.L.V.; Jahoda, C.A.; James, S.Elizabeth;

THE USE OF CONFOCAL LASER SCANNING MICROSCOPY TO ASSESS THE POTENTIAL SUITABILITY OF 3D SCAFFOLDS FOR TISSUE REGENERATION, BY MONITORING EXTRA‐CELLULAR MATRIX DEPOSITION AND BY QUANTIFYING CELLULAR INFILTRATION AND PROLIFERATION

Abstract

The great many varieties of dermal regeneration materials currently being developed requires that sound in vitro assessments of their potential to be infiltrated with host cells are needed prior to any in vivo studies. The biocompatibility of scaffolds is conventionally determined by indirect biochemical assays as measures of cell number/viability within these materials. A disadvantage of these methods is the failure to provide information pertaining to the spatial distribution of cells in situ. In the case of dermal regeneration, if cells are only present in appreciable numbers on the outer portion of a scaffold, then critical aspects such as extra‐cellular matrix (ECM) production and vascularization will be limited, and the likelihood of successful tissue regeneration low. Thus, direct enumeration of cells within scaffolds, with respect to spatial distribution and time, is required to adequately assess the potential biocompatibility. In this article we demonstrate a systematic approach to the quantifica...

Related Organizations
Keywords

B000 Health Professions, B100 Anatomy Physiology and Pathology, C000 Biological and Biomedical Sciences, 500

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!