
handle: 11585/49814
The purpose of this paper is to assess the impact of timer-based burst assembly algorithms for TCP traffic. We present an analysis for short, medium and long assembly times and investigate segment and flow distribution over the assembled bursts. Further, we also analyze their impact on the congestion window evolution and on the effective throughput achieved. It has been found out that short assembly times are ideally suitable for sources with small congestion windows, allowing for a speed up, while large assembly times yield a lower throughput variation among the individual assembled flows. For long assembly times, the transfer of more segments from the same source is trading off the increase of the burstification delay but no throughput gain is obtained. However, large assembly times smooth out individual flow performance and provide a significant lower variation of throughput. To this end, in this paper, we propose a new adaptive burst assembly algorithm that dynamically assigns flows to different burstifiers based on their instant window size.
OPTICAL NETWORKING; OPTICAL BURST SWITCHING; BURST ASSEMBLY
OPTICAL NETWORKING; OPTICAL BURST SWITCHING; BURST ASSEMBLY
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
