Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Design and performance tradeoff analysis of floating point datapath in LTE downlink control channel receiver

Authors: S. Syed Ameer Abbas; S. Susithra; D. Shanmuga Priya; S.J. Thiruvengadam;

Design and performance tradeoff analysis of floating point datapath in LTE downlink control channel receiver

Abstract

Long Term Evolution (LTE) receiver processing involves decoding of complex valued received symbols from each antenna port to detect the codeword sent by the transmitter. The main objective of this paper is to design and implement the receiver hardware architectures for the control channels, PCFICH (Physical Control Format Indicator Channel) and PHICH (Physical Hybrid ARQ Indicator Channel) using fixed point and IEEE 754 single precision floating point arithmetic units for single input single output (SISO) configuration and validate their performance based on the signal to noise ratio (SNR) and mean square error (MSE) or the decision values for detecting the code words received. Floating point based receiver has an edge over fixed point in terms of reduced developing time, reduced complexity, higher accuracy, higher precision and tolerance to error but at the cost of increased hardware. Floating point based receivers employing folding and superscalar techniques to optimize the architectures through reduction in resource utilization are synthesized and implemented. ModelSim 6.4a is used to simulate the results while the architecture is implemented in Virtex-6 FPGA device using Xilinx-Plan Ahead tool.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!