Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sensors and Actuator...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Sensors and Actuators B Chemical
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Nanopowders of chromium doped TiO2 for gas sensors

Authors: P. Gwizdz; Marta Radecka; Thomas Graule; Mieczyslaw Rekas; Katarzyna Zakrzewska; Agnieszka Lacz; Krystyna Schneider; +5 Authors

Nanopowders of chromium doped TiO2 for gas sensors

Abstract

Abstract Nanocrystalline powders of TiO2 and TiO2:Cr (0.1–10 at.% Cr) obtained by flame spray synthesis (FSS), are used as starting materials for preparation of gas sensors. Characterization of nanopowders is carried out by thermogravimetry (TG), Brunauer–Emmett–Teller (BET), adsorption isotherms, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Gas sensing materials are calcined at 400 °C in a form of tablets, the morphology of which is similar to that of starting materials. The mass loss of nanopowders upon heating, as determined from its temperature profile in TG, is correlated with the specific surface area (SSA) obtained from BET measurements. High SSA exceeding 100 m2/g is inherently related to the enhanced decomposition of organic residua below 400 °C. XRD diffraction patterns indicate small crystallite sizes (6–27 nm) and the presence of both polymorphic forms: anatase and rutile, independently of the form of nanomaterials. SEM images demonstrate agglomeration of crystallites into spherical grains. Gas sensing characteristics of TiO2:Cr nanosensors upon interaction with H2 are recorded in a self-assembled experimental system. Detection of hydrogen is carried out over the concentration range of 50–3000 ppm at the temperatures extending from 200 to 400 °C. It is demonstrated that nanomaterials based on TiO2:Cr are attractive for ultimate sensor applications due to a substantial decrease in the operating temperature down to 210–250 °C. At a certain level of doping (of about 5 at.%) a reversal of the sensor response from that of n-type to that of p-type semiconductor is seen. This effect can be accounted for by the acceptor-type substitutional defects C r ′ Ti built into TiO2 lattice.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!