Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Mutation Research/Fu...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Genetic factors in chronic inflammation: Single nucleotide polymorphisms in the STAT-JAK pathway, susceptibility to DNA damage and Crohn's disease in a New Zealand population

Authors: Ferguson, Lynnette R.; Han, Dug Yeo; Fraser, Alan G.; Huebner, Claudia; Lam, Wen Jiun; Morgan, Angharad R.; Duan, He; +1 Authors

Genetic factors in chronic inflammation: Single nucleotide polymorphisms in the STAT-JAK pathway, susceptibility to DNA damage and Crohn's disease in a New Zealand population

Abstract

The Signal Transducers and Activators of Transcription (STAT)-Janus kinase (JAK) pathway controls signal transduction between cell surface receptors and the nucleus. Two members of that pathway, STAT3 and JAK2, enhanced the risk of Crohn's disease (CD) in recent genome-wide association studies. We replicated these findings in a New Zealand Caucasian case-control cohort, by genotyping two single nucleotide polymorphisms (SNPs) in STAT3 (rs744166(G>A) and rs3816769(C>T)) and rs10758669(A>C) in JAK2, in 302 CD patients and 382 controls. For STAT3, there was a significant decrease in the frequency of the G allele of rs744166 and the C allele of rs3816769 in CD patients as compared with controls (OR=0.76, 95% CI=0.61-0.95, p=0.013; OR=0.71, 95% CI=0.56-0.89, p=0.003). For the JAK2 rs10758669 polymorphism, the homozygous C/C or heterozygous A/C genotypes increased the risk of having CD as compared with the homozygous A/A (OR=1.76, 95% CI=1.26-2.45 and OR=2.36, 95% CI=1.44-3.86, respectively, p=0.0003). Variant alleles in either gene significantly modified the likelihood of inflammatory disease in a colonic location, and of developing extra-intestinal manifestations. The JAK2 variant also strongly enhanced the risk of ileocolonic disease, with stricturing or ileal/stricturing behaviour, requiring a bowel resection. We further studied a subset of our control population, stratified for JAK2 rs10758669 and/or STAT3 rs3816769 genotype. Carrying either the JAK2 or STAT3 IBD risk allele was associated with significantly enhanced susceptibility to DNA damage, as estimated by comet assays in peripheral blood leukocytes, with or without a subsequent oxidative challenge. That is, both risk alleles enhance genomic instability. The JAK2 SNP is part of a haplotype previously associated with enhanced susceptibility to myeloproliferative neoplasms, but functional consequences of the STAT3 variant had not been previously demonstrated. It will be of interest to follow up CD patients carrying either JAK2 or STAT3 risk alleles for development of further secondary effects, including cancer.

Related Organizations
Keywords

Adult, Male, STAT3 Transcription Factor, Adolescent, Nod2 Signaling Adaptor Protein, 610, Infant, Janus Kinase 2, Polymorphism, Single Nucleotide, Genomic Instability, Crohn Disease, Child, Preschool, Humans, Female, Genetic Predisposition to Disease, Child, DNA Damage, New Zealand, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    113
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
113
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!