Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

EPR Studies on a Stable Sulfinyl Radical Observed in the Iron−Oxygen-Reconstituted Y177F/I263C Protein R2 Double Mutant of Ribonucleotide Reductase from Mouse

Authors: Annie Adrait; Astrid Gräslund; Maria Öhrström; Anne-Laure Barra; Lars Thelander;

EPR Studies on a Stable Sulfinyl Radical Observed in the Iron−Oxygen-Reconstituted Y177F/I263C Protein R2 Double Mutant of Ribonucleotide Reductase from Mouse

Abstract

Ribonucleotide reductase (RNR) catalyzes the biosynthesis of deoxyribonucleotides. The active enzyme contains a diiron center and a tyrosyl free radical required for enzyme activity. The radical is located at Y177 in the R2 protein of mouse RNR. The radical is formed concomitantly with the mu-oxo-bridged diferric center in a reconstitution reaction between ferrous iron and molecular oxygen in the protein. EPR at 9.6 and 285 GHz was used to investigate the reconstitution reaction in the double-mutant Y177F/I263C of mouse protein R2. The aim was to produce a protein-linked radical derived from the Cys residue in the mutant protein to investigate its formation and characteristics. The mutation Y177F hinders normal radical formation at Y177, and the I263C mutation places a Cys residue at the same distance from the iron center as Y177 in the native protein. In the reconstitution reaction, we observed small amounts of a transient radical with a probable assignment to a peroxy radical, followed by a stable sulfinyl radical, most likely located on C263. The unusual radical stability may be explained by the hydrophobic surroundings of C263, which resemble the hydrophobic pocket surrounding Y177 in native protein R2. The observation of a sulfinyl radical in RNR strengthens the relationship between RNR and another free radical enzyme, pyruvate formate-lyase, where a similar relatively stable sulfinyl radical has been observed in a mutant. Sulfinyl radicals may possibly be considered as stabilized forms of very short-lived thiyl radicals, proposed to be important intermediates in the radical chemistry of RNR.

Keywords

Free Radicals, Phenylalanine, Electron Spin Resonance Spectroscopy, Recombinant Proteins, Enzyme Activation, Oxygen, Mice, Spectrophotometry, Ribonucleotide Reductases, Escherichia coli, Mutagenesis, Site-Directed, Animals, Tyrosine, Cysteine, Ferrous Compounds, Isoleucine

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!