
In this paper, we consider the output-feedback exponential stabilization of Timoshenko beam with the boundary control and input distributed delay. Suppose that the outputs of controllers are of the forms ?1u1(t)+β1u1(t??)+???0g1(?)u1(t+?)d?$\alpha _{1}u_{1}(t)+\beta _{1}u_{1}(t-\tau )+{\int }_{-\tau }^{0}g_{1}(\eta )u_{1} (t+\eta )d\eta $ and ?2u2(t)+β2u2(t??)+???0g2(?)u2(t+?)d?$\alpha _{2}u_{2}(t)+\beta _{2}u_{2}(t-\tau ) +{\int }_{-\tau }^{0}g_{2}(\eta )u_{2}(t+\eta )d\eta $ respectively, where u1(t) and u2(t) are the inputs of controllers. Using the tricks of the Luenberger observer and partial state predictor, we translate the system with delay into a system without delay. And then, we design the feedback controls to stabilize the system without delay. Finally, we prove that under the choice of such controls, the original system also is stabilized exponentially.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
