Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2005
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2004
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Cantor set in the unit sphere in $\mathbb{C}^2$ with large polynomial hull

A Cantor set in the unit sphere in \(\mathbb C^2\) with large polynomial hull
Authors: Jöricke, Burglind;

A Cantor set in the unit sphere in $\mathbb{C}^2$ with large polynomial hull

Abstract

It is an old question how massive polynomial hulls of Cantor sets in $\mathbb{C}^n$ can be. In contrast to expectation e.g. Rudin, Vitushkin and Henkin showed on examples that it can be rather massive. Motivated by problems of holomorphic convexity of subsets of strictly pseudoconvex boundaries and removable singularities the question was asked for Cantor sets in the unit sphere. It was known that tame Cantor sets in the unit sphere are polynomially convex. We give an example of a wild Cantor set in the sphere whose polynomial hull contains a large ball. In some sense this can be opposed to a still open conjecture of Vitushkin on the existence of a lower bound for the diameter of the largest boundary component of a relatively closed complex curve in the ball passing through the origin.

Keywords

Mathematics - Complex Variables, Cantor set, Extension of functions and other analytic objects from CR manifolds, FOS: Mathematics, polynomially convex, Complex Variables (math.CV), polynomial hull, unit sphere in \(\mathbb{C}^2\), Polynomial convexity, rational convexity, meromorphic convexity in several complex variables, 32E20

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green