Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Science Evolutionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Science Evolution
Article
License: CC BY
Data sources: UnpayWall
Science Evolution
Article . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

INVARIANT PSEUDO-SASAKIAN AND K-CONTACT STRUCTURES ON SEVEN-DIMENSIONAL NILPOTENT LIE GROUPS

Authors: Nikolai Smolentsev; Nikolai Smolentsev;

INVARIANT PSEUDO-SASAKIAN AND K-CONTACT STRUCTURES ON SEVEN-DIMENSIONAL NILPOTENT LIE GROUPS

Abstract

This paper studies the existence of left-invariant Sasaki contact structures on the seven-dimensional nilpotent Lie groups. It is shown that the only Lie group allowing Sasaki structure with a positive definite metric tensor is the Heisenberg group A complete list of 22 classes of seven-dimensional nilpotent Lie groups which admit pseudo-Riemannian Sasaki structures is found. A list of 25 classes of seven-dimensional nilpotent Lie groups admitting K-contact structures, but not pseudo-Riemannian Sasaki structures, is also presented. All the contact structures considered are central extensions of six-dimensional nilpotent symplectic Lie groups. Formulas that connect the geometric characteristics of six-dimensional nilpotent almost pseudo-Kähler Lie groups and seven-dimensional nilpotent contact Lie groups are established. As is known, for six-dimensional nilpotent pseudo-Kähler Lie groups the Ricci tensor is always zero. In contrast to the pseudo-Kӓhler case, it is shown that on contact seven-dimensional Lie algebras the Ricci tensor is nonzero even in directions of the contact distribution

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
hybrid