Downloads provided by UsageCounts
handle: 10553/117902 , 10261/166776 , 2117/114321 , 11572/194349
Most recent approaches to 3D pose estimation from RGB-D images address the problem in a two-stage pipeline. First, they learn a classifier-typically a random forest-to predict the position of each input pixel on the object surface. These estimates are then used to define an energy function that is minimized w.r.t. the object pose. In this paper, we focus on the first stage of the problem and propose a novel classifier based on a depth-aware Convolutional Neural Network. This classifier is able to learn a scale-adaptive regression model that yields very accurate pixel-level predictions, allowing to finally estimate the pose using a simple RANSAC-based scheme, with no need to optimize complex ad hoc energy functions. Our experiments on publicly available datasets show that our approach achieves remarkable improvements over state-of-the-art methods.
7
Àrees temàtiques de la UPC::Informàtica::Robòtica, computer vision, Classificació INSPEC::Pattern recognition::Computer vision, Deep Learning, RGB-D images, :Informàtica::Robòtica [Àrees temàtiques de la UPC], :Pattern recognition::Computer vision [Classificació INSPEC], 1203 Ciencia de los ordenadores, Neural networks
Àrees temàtiques de la UPC::Informàtica::Robòtica, computer vision, Classificació INSPEC::Pattern recognition::Computer vision, Deep Learning, RGB-D images, :Informàtica::Robòtica [Àrees temàtiques de la UPC], :Pattern recognition::Computer vision [Classificació INSPEC], 1203 Ciencia de los ordenadores, Neural networks
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 104 | |
| downloads | 254 |

Views provided by UsageCounts
Downloads provided by UsageCounts