
doi: 10.18653/v1/s15-2134
QA TempEval shifts the goal of previous TempEvals away from an intrinsic evaluation methodology toward a more extrinsic goal of question answering. This evaluation requires systems to capture temporal information relevant to perform an end-user task, as opposed to corpus-based evaluation where all temporal information is equally important. Evaluation results show that the best automated TimeML annotations reach over 30% recall on questions with ‘yes’ answer and about 50% on easier questions with ‘no’ answers. Features that helped achieve better results are event coreference and a time expression reasoner.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
