Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification of two promoters for human d-amino acid oxidase gene: implication for the differential promoter regulation mediated by PAX5/PAX2

Authors: Diem Hong, Tran; Yuji, Shishido; Seong Pil, Chung; Huong Thi Thanh, Trinh; Kazuko, Yorita; Takashi, Sakai; Kiyoshi, Fukui;

Identification of two promoters for human d-amino acid oxidase gene: implication for the differential promoter regulation mediated by PAX5/PAX2

Abstract

D-amino acid oxidase (DAO) is a flavoenzyme that metabolizes d-amino acids. Until now, the DAO expression mechanism is still unclear. Our assessment of human DAO (hDAO) promoter activity using luciferase reporter system indicated the proximal upstream region of exon1 (-237/+1) has promoter activity (P1). Interestingly, we identified an alternative promoter in the proximal upstream region of exon2 (+4,126/+4,929) (P2). This alternative promoter has stronger activity than that of P1. Our results also revealed a negative regulatory segment (+1,163/+1,940) in intron1; that would act in concert with P1 and P2. Bioinformatics analyses elucidated the conservation of transcription factor PAX5 family binding sites among species. These sites (-60/-31) and (+4,464/+4,493), locate in P1 and P2 of hDAO, respectively. Gel shift assays demonstrated P1 contains a site (-60/-31) for PAX5 binding while P2 has three sites for both paired box gene 2 (PAX2) and paired box gene 5 (PAX5) binding. The dual roles of PAX5 family in regulating hDAO transcription by modulating promoter activity of P1 and activating promoter activity of P2 were implicated based on the site-directed mutagenesis experiment. Altogether, our data suggested the differential regulation of hDAO expression by two promoters whose activities may be modulated by the binding of PAX2 and PAX5.

Keywords

D-Amino-Acid Oxidase, Base Sequence, Swine, Molecular Sequence Data, PAX2 Transcription Factor, PAX5 Transcription Factor, Sequence Homology, Nucleic Acid, Animals, Humans, LLC-PK1 Cells, Promoter Regions, Genetic

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!