Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Topographyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Topography
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Brain Topography
Article . 2015
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessing the Spatial Precision of SE and GE-BOLD Contrast at 7 Tesla

Authors: Rosa M, Sanchez Panchuelo; Denis, Schluppeck; Jack, Harmer; Richard, Bowtell; Susan, Francis;

Assessing the Spatial Precision of SE and GE-BOLD Contrast at 7 Tesla

Abstract

Spin echo (SE) EPI offers an alternative to standard gradient echo (GE) EPI for functional MRI. SE-EPI offers improved spatial specificity, since signal changes originate from the microvasculature, but its lower functional sensitivity has limited the usage of this sequence in fMRI experiments. Differential fMRI paradigms, in which two closely matched stimulus conditions are used, can suppress the contribution from veins, thus also offering improved spatial specificity compared to conventional block or event-related designs with long "rest" periods. In this study, we employed a differential fMRI paradigm to stimulate bands of primary visual cortex with pre-defined widths by using visual stimuli comprised of complementary rings of contrast-reversing checkerboard patterns (8 Hz). This paradigm was used to investigate the spatial specificity of GE and SE-BOLD contrast at 7T. Results show that the contrast-to-noise ratio (CNR) is larger for GE-EPI data than for the SE-EPI data for band widths in the range 1.7-6.6 mm, however as the width of the band decreases the CNR for GE and SE sequences converges. These results suggest that when using a differential mapping paradigm, GE-BOLD contrast is better for studying functional features that are larger than ~1.5 mm in size.

Related Organizations
Keywords

Oxygen, Brain Mapping, Cerebrovascular Circulation, Image Processing, Computer-Assisted, Visual Perception, Humans, Signal-To-Noise Ratio, Magnetic Resonance Imaging, Photic Stimulation, Visual Cortex

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!