Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Circulation Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2012
Data sources: Hal
Circulation Research
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integration of Repulsive Guidance Cues Generates Avascular Zones That Shape Mammalian Blood Vessels

Authors: Meadows, Stryder M; Fletcher, Peter J; Moran, Carlos; Xu, Ke; Neufeld, Gera; Chauvet, Sophie; Mann, Fanny; +2 Authors

Integration of Repulsive Guidance Cues Generates Avascular Zones That Shape Mammalian Blood Vessels

Abstract

Rationale: Positive signals, such as vascular endothelial growth factor, direct endothelial cells (ECs) to specific locations during blood vessel formation. Less is known about repulsive signal contribution to shaping vessels. Recently, “neuronal guidance cues” have been shown to influence EC behavior, particularly in directing sprouting angiogenesis by repelling ECs. However, their role during de novo blood vessel formation remains unexplored. Objective: To identify signals that guide and pattern the first mammalian blood vessels. Methods and Results: Using genetic mouse models, we show that blood vessels are sculpted through the generation of stereotyped avascular zones by EC-repulsive cues. We demonstrate that Semaphorin3E (Sema3E) is a key factor that shapes the paired dorsal aortae in mouse, as sema3E −/− embryos develop an abnormally branched aortic plexus with a markedly narrowed avascular midline. In vitro cultures and avian grafting experiments show strong repulsion of ECs by Sema3E-expressing cells. We further identify the mouse notochord as a rich source of multiple redundant neuronal guidance cues. Mouse embryos that lack notochords fail to form cohesive aortic vessels because of loss of the avascular midline, yet maintain lateral avascular zones. We demonstrate that lateral avascular zones are directly generated by the lateral plate mesoderm, a critical source of Sema3E. Conclusions: These findings demonstrate that Sema3E-generated avascular zones are critical regulators of mammalian cardiovascular patterning and are the first to identify a repulsive role for the lateral plate mesoderm. Integration of multiple, and in some cases redundant, repulsive cues from various tissues is critical to patterning the first embryonic blood vessels.

Keywords

Mice, Knockout, Notochord, Membrane Proteins, Neovascularization, Physiologic, Forkhead Transcription Factors, Semaphorins, In Vitro Techniques, Embryo, Mammalian, Mesoderm, Cytoskeletal Proteins, Mice, Models, Animal, Hepatocyte Nuclear Factor 3-beta, Animals, Blood Vessels, Endothelium, Vascular, [SDV.BC] Life Sciences [q-bio]/Cellular Biology, Aorta, Cells, Cultured, Glycoproteins, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
Green
bronze