
pmid: 15581076
The objective of this investigation was to test the biodegradability of gellan gum in the presence of galactomannanase in order to explore its suitability for the development of colon-specific controlled delivery systems. Gellan beads containing azathioprine (AZA) were prepared by ionotropic gelation in the presence of Ca2+ ions and were coated with an enteric polymer, Eudragit S-100. The effects of the simulated colonic fluid (SCF, pH 7.4 phosphate buffer) containing 15 mg/mL of galactomannanase on the in vitro release profiles of uncoated and enteric-coated beads were investigated, and the morphological changes in the structure of uncoated beads were assessed by scanning electron microscopy (SEM). In addition, 1% solution of deacetylated gellan gum was prepared and several aliquots of the resulting solution were evaluated rheologically to determine the concentration- and time-dependent effects of galactomannanase. Based on the percent drug released at 2 h, approximately 10% greater amount of drug was released in the SCF containing galactomannanase when compared with the enzyme-free dissolution medium. Results of rheological studies demonstrated that effects of galactomannanase on the viscosity of gellan gum solution are concentration-dependent rather than time-dependent. A significant decrease in the viscosity was noted in the presence of galactomannanase at a concentration of 15 mg/ mL, indicating that the polysaccharide degraded in an enzymatic reaction. SEM micrographs showed a distinct disruption of the polymeric network in the SCF. Overall, the results suggest that gellan gum undergoes significant degradation in the presence of galactomannanase which in turn facilitates the drug release from beads in the SCF in a controlled manner, thus approving the suitability of gellan gum as a carrier for controlled colonic delivery.
Drug Carriers, Gastric Juice, Time Factors, Colon, Viscosity, Chemistry, Pharmaceutical, Polysaccharides, Bacterial, Drug Evaluation, Preclinical, Inflammatory Bowel Diseases, Biodegradation, Environmental, Polymethacrylic Acids, Polysaccharides, Delayed-Action Preparations, Azathioprine, Mannosidases, Microscopy, Electron, Scanning, Technology, Pharmaceutical, Intestinal Mucosa
Drug Carriers, Gastric Juice, Time Factors, Colon, Viscosity, Chemistry, Pharmaceutical, Polysaccharides, Bacterial, Drug Evaluation, Preclinical, Inflammatory Bowel Diseases, Biodegradation, Environmental, Polymethacrylic Acids, Polysaccharides, Delayed-Action Preparations, Azathioprine, Mannosidases, Microscopy, Electron, Scanning, Technology, Pharmaceutical, Intestinal Mucosa
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 45 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
