Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2013
Data sources: zbMATH Open
Fundamenta Informaticae
Article . 2013 . Peer-reviewed
Data sources: Crossref
Fundamenta Informaticae
Article . 2013
Data sources: mEDRA
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Refinement of Synchronizable Places with Multi-workflow Nets

Refinement of synchronizable places with multi-workflow nets
Authors: Hee, van, K.M.; Sidorova, N.; Werf, van der, J.M.E.M.;

Refinement of Synchronizable Places with Multi-workflow Nets

Abstract

Stepwise refinement is a well-known strategy in system modeling. The refinement rules should preserve essential behavioral properties, such as deadlock freedom, boundedness and weak termination. A well-known example is the refinement rule that replaces a safe place of a Petri net with a sound workflow net. In this case a token on the refined place undergoes a procedure that is modeled in detail by the refining workflow net. We generalize this rule to component-based systems, where in the first, high-level, refinement iterations we often encounter in different components places that represent in fact the counterparts of the same procedure “simultaneously” executed by the components. The procedure involves communication between these components. We model such a procedure as a multi-workflow net, which is actually a composition of communicating workflows. Behaviorally correct multi-workflow nets have the weak termination property. The weak termination requirement is also applied to the system being refined. We want to refine selected places in different components with a multi-workflow net in such a way that the weak termination property is preserved through refinements. We introduce the notion of synchronizable places and show that weak termination is preserved under the refinement of places with multiworks if and only if the refined places are synchronizable. We give a method to decide if a given set of places is synchronizable.

Keywords

Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!