Downloads provided by UsageCounts
Let $X$ be a finite set of points in $\mathbb{R}^d$. The Tukey depth of a point $q$ with respect to $X$ is the minimum number $��_X(q)$ of points of $X$ in a halfspace containing $q$. In this paper we prove a depth version of Carath��odory's theorem. In particular, we prove that there exists a constant $c$ (that depends only on $d$ and $��_X(q)$) and pairwise disjoint sets $X_1,\dots, X_{d+1} \subset X$ such that the following holds. Each $X_i$ has at least $c|X|$ points, and for every choice of points $x_i$ in $X_i$, $q$ is a convex combination of $x_1,\dots, x_{d+1}$. We also prove depth versions of Helly's and Kirchberger's theorems.
simplicial depth, Helly type theorem, Computational Geometry (cs.CG), FOS: Computer and information sciences, Simplicial depth, :32 Several complex variables and analytic spaces::32F Geometric convexity [Classificació AMS], Helly-type theorems and geometric transversal theory, Convex geometry, Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi matemàtica, :Matemàtiques i estadística::Anàlisi matemàtica [Àrees temàtiques de la UPC], FOS: Mathematics, Classificació AMS::32 Several complex variables and analytic spaces::32F Geometric convexity, Tukey depth, Computer Science - Computational Geometry, Mathematics - Combinatorics, Teoremes, Combinatorics (math.CO)
simplicial depth, Helly type theorem, Computational Geometry (cs.CG), FOS: Computer and information sciences, Simplicial depth, :32 Several complex variables and analytic spaces::32F Geometric convexity [Classificació AMS], Helly-type theorems and geometric transversal theory, Convex geometry, Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi matemàtica, :Matemàtiques i estadística::Anàlisi matemàtica [Àrees temàtiques de la UPC], FOS: Mathematics, Classificació AMS::32 Several complex variables and analytic spaces::32F Geometric convexity, Tukey depth, Computer Science - Computational Geometry, Mathematics - Combinatorics, Teoremes, Combinatorics (math.CO)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 73 | |
| downloads | 57 |

Views provided by UsageCounts
Downloads provided by UsageCounts