
AISI-321 steel samples were implanted with Al ions (implantation-energy:40 keV; dose: 2×1017 ions/cm2). Thermal oxidationof the samples was performed at 450, 550, 600, and 650°C for periodsvarying from 1 to 6 days in air and in a corrosive CO2-containingenvironment. Nuclear Reaction Analysis (NRA) and Rutherford BackscatteringSpectrometry (RBS) were used to investigate the oxidized samples. Asignificant improvement of the oxidation resistance of the implantedmaterial in comparison to the nonimplanted material was observed. Thisespecially applies for samples oxidized at high temperatures. The aluminumdepth distribution determined by NRA [using the resonance at 992 keV of the27Al(p, γ )28Si nuclear reaction] and RBS,indicated no variation of the Al profile in the temperature region450–600°C, whereas at 650°C a slight Al diffusion wasobserved. Scanning electron microscopy (SEM–EDS) was applied to studythe surface morphology and the constitution of the oxide scale formed, aswell as to explain the influence of Al implantation on the oxidation behaviorof AISI-321 austenitic stainless steel.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
