Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://link.springe...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://link.springer.com/cont...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2007
Data sources: zbMATH Open
https://doi.org/10.1007/117585...
Part of book or chapter of book . 2006 . Peer-reviewed
Data sources: Crossref
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 5 versions
addClaim

Algorithm for K Disjoint Maximum Subarrays

Algorithms for \(K\)-disjoint maximum subarrays
Authors: Sung Eun Bae; Tadao Takaoka;

Algorithm for K Disjoint Maximum Subarrays

Abstract

The maximum subarray problem is to find the array portion that maximizes the sum of array elements in it. For K disjoint maximum subarrays, Ruzzo and Tompa gave an O(n) time solution for one-dimension. This solution is, however, difficult to extend to two-dimensions. While a trivial solution of O(Kn3) time is easily obtainable for a two-dimensional array of size n × n, little study has been undertaken to improve the time complexity. We first propose an O(n + K log K) time solution for one-dimension. This is asymptotically equivalent to Ruzzo and Tompa's when sorted order is needed. Based on this, we achieve O(n3 + Kn2 log n) time for two-dimensions. This is cubic time when K ≤ n/ log n. We also show that this upper bound does not exceed O(n3 log n) for K > n, namely O(n3 + min (K,n) · n log n).

Related Organizations
Keywords

disjoint sets, maximum subarray problem, ranking \(K\) maximum sums, union/find problem, Nonnumerical algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
bronze