Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research.fiarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research.fi
Article . 2023 . Peer-reviewed
Data sources: Research.fi
https://doi.org/10.1007/978-90...
Part of book or chapter of book . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energetic Particles in the Cusp: A Cluster/RAPID View

Authors: Asikainen Timo;

Energetic Particles in the Cusp: A Cluster/RAPID View

Abstract

Energetic particles have been persistently observed in the exterior cusp by different satellite missions such as POLAR, Cluster-II, Viking, ISEE etc. Yet the source and the acceleration mechanism of these particles have remained unclear. In this paper I review our studies of energetic particles in the cusp and the nearby high-latitude region of closed magnetospheric field lines (HLPS, high-latitude dayside plasma sheet) using the data obtained by the RAPID instrument onboard the Cluster-II satellites. We conducted a large scale statistical study to examine the dependence of the energetic particle fluxes in the cusp and HLPS on solar wind/IMF conditions as well as on geomagnetic activity. The study showed that energetic ion fluxes in the HLPS correlate strongly with substorm activity and electron fluxes with solar wind speed and geomagnetic activity. In the exterior cusp a clear correlation between lower energy ions (E 75 keV) correlated with substorm activity. Our case studies have shown that when IMF By dominates reconnection can take place near the cusp and release energetic particles from closed field lines to the cusp. Coupled with these detailed observations the statistical results imply that the energetic particles in the HLPS and the cusp originate in the near-Earth magnetotail from where they can drift to the HLPS region. From the HLPS the higher energy particles diffuse more or less directly into the cusp while the lower energy particles are released into the cusp by reconnection. These observations provide a consistent explanation for the cusp energetic particles without a need for significant local acceleration of shocked solar wind plasma to MeV energies. While some energy transfer from the electromagnetic waves to plasma particles is known to occur in the cusp it cannot explain the observations discussed here.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!