
A soft-spin Heisenberg model is used to investigate the Curie temperature of elementary iron and iron-rich intermetallics such as Sm2Fe17. In the localized limit the mean-field solution of the classical Heisenberg model is reproduced, while quasi-localized perturbation theory accounts for band-structure effects. An extrapolation of this quasi-localized approach yields physically reasonable results, which makes it possible to interpolate between the delocalized band-structure and localized Heisenberg limits. Using Stoner-type magnetic energies derived from paramagnetic band-structure calculations it is argued that the comparatively low Curie temperature of iron-rich rare-earth intermetallics such as R2Fe17 originates from their quasi-weak ferromagnetism. Upon interstitial modification, these materials leave the quasi-weak limit and become nearly strong ferromagnets with enhanced Curie temperature.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
