Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.21954/ou...
Thesis . 2018
License: CC BY NC ND
Data sources: Datacite
versions View all 2 versions
addClaim

Genomic and Phenotypic Analyses of Polychaete Sibling Species Platynereis dumerilii and Platynereis massiliensis in Relation to Ocean Acidification

Authors: Valvassori, Giulia;

Genomic and Phenotypic Analyses of Polychaete Sibling Species Platynereis dumerilii and Platynereis massiliensis in Relation to Ocean Acidification

Abstract

The increase of anthropogenic carbon dioxide emissions and the subsequent uptake of CO2 by the sea, is leading to a decrease in the pH of the oceans, a process known as Ocean Acidification. One of the main challenges of the current research on climate change is to determine how marine species respond to low pH/elevated pCO2 conditions. This thesis has investigated the effects of natural OA on the polychaete species Platynereis dumerilii and its sibling P. massiliensis (Annelida, Nereididae) as driver of genetic differentiation and phenotype/genotype selection. Platynereis spp. populations were sampled in five geographical areas situated along a thermo-latitudinal gradient along the Italian coasts, characterized by different pH conditions (acid vs normal). A multidisciplinary approach, focused on different aspects of the target species biology, was chosen and the following analyses were performed: (a) morphological and morphometric analyses of different populations/genotypes; (b) laboratory rearing of different populations to study the reproductive biology and gamete morphology; (c) population genetics by the amplification of a mitochondrial DNA marker (COI); (d) population genomics by a next-generation sequencing approach (RAD-seq); (e) background analyses and a long term laboratory experiment on selected genotypes/populations to study physiological responses to different pH conditions. This work has confirmed that Platynereis dumerilii and P. massiliensis represent two complexes of sibling species characterized by contrasting life history traits, reproductive biology and gamete morphology. The overall Platynereis massiliensis predominance in the CO2 vent systems is not a direct consequence of elevated pCO2, but it seems to derive from a winning reproductive strategy (brooding habit) in low pH conditions. Unlike Platynereis dumerilii, P. massiliensis is potentially able to thrive in the CO2 vents thanks to the higher stability of its antioxidant defence systems over temporal scale and its greater responsiveness to extreme hypercapnia conditions.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green