Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Halarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2007
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geodynamics
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Slab detachment and mantle plume upwelling in subduction zones: An example from the Italian South-Eastern Alps

Authors: MACERA, PATRIZIA; GASPERINI D; RANALLI G; MAHATSENTE R.;

Slab detachment and mantle plume upwelling in subduction zones: An example from the Italian South-Eastern Alps

Abstract

Abstract The geochemical properties of the South-Eastern Alps volcanics (SEAV, Eocene age) call for a within-plate origin of the most primitive basalts, in contrast to the widespread calc-alkaline magmatism which developed some million years later northwestwards along the Periadriatic Lineament. The two contrasting magmatic suites that coexist in the Alpine area define binary mixing relationships in the Sr–Nd and Sr–Pb isotopic space, the end members of which being a crustal component (e.g. lower continental crust) and a HIMU-DMM component (e.g. the SEAV). The occurrence of a HIMU (high μ = high 238 U/ 204 Pb) component, which normally traces mantle plumes of deep mantle origin, in a tectonic regime dominated by collision tectonics (the tertiary convergence of European and Adriatic plates) can be explained by slab detachment and ensuing upwelling of mantle material through the lithospheric gap. We combine geochemical data and geophysical modelling to unravel the evolution of the Alpine slab after interaction with plume material and the genesis of the Alpine magmatism. The combination of changes in negative buoyancy caused by continental subduction and softening of a part of the slab caused by slab–plume interaction may act as a regulator for the time of slab breakoff and, consequently, for the variations of magmatism in the overriding lithosphere above a subduction zone. The thermal evolution of a subducting slab is modified by contact with the plume material which decreases significantly the total strength of the slab and favours slab detachment. Interactions between the HIMU component and the shallower depleted mantle can account for the geochemical characteristics of the SEAV. Counterflows of plume material towards the top of the subducting slab may also increase heating and partial melting of the overriding mantle wedge, giving rise to the calc-alkaline suite outcropping in the proximity of the Periadriatic Lineament.

Related Organizations
Keywords

Physical Sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 10%
Green