Powered by OpenAIRE graph
Found an issue? Give us feedback
https://dx.doi.org/1...arrow_drop_down
https://dx.doi.org/10.24355/db...
Doctoral thesis . 2018
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of zebrafish infection and screening model for Clostridium difficile

Entwicklung eines Infektions- und Screening-Modell für Clostridium difficile im Zebrafisch
Authors: Li, Junkai;

Development of zebrafish infection and screening model for Clostridium difficile

Abstract

Die Clostridium difficile (C. difficile) Infektion (CDI) ist eine Antibiotika-assoziierte Darmerkrankung und gilt als Hauptverursacher von therapieassoziierten Infektionen. Das Symptom der CDI lässt sich als leichter bis mittelschweren Durchfall und pseudomembranöse Kolitis charakterisieren. Die Merkmale der Krankheit umfassen die Infiltration von Neutrophilen und Läsionen im Colonepithel. C. difficile produziert zwei Hauptvirulenzfaktoren (TcdA/B). Beide Toxine verlagern die N-terminale Glycosyltransferasedomäne (GTD) in das Zytosol von Zielzellen und inaktivieren dabei Rho-GTPasen durch Glycosylierung. Die Inaktivierung verursacht Zellabrunden, sowie Umverteilen des Aktinzytoskeletts und Apoptose. Obwohl Metronidazol und Vancomycin als Hauptmittel zur Behandlung von CDI in den letzten drei Jahrzehnten genutzt wurden, ist es notwendig aufgrund des Auftretens von hypervirulenten Stämmen neue Behandlungsmethoden oder nicht Antibiotika gebundene Medikamente zu entwerfen. Im ersten Teil dieser Forschung wurde ein stabiler transgener Zebrafisch etabliert, der die GTD-Domäne unter Kontrolle eines hatching gland-spezifischen Enhancers exprimiert. Das Modell wurde zum Screening und zur Identifizierung von pharmakologischen Substanzen gegen Tcd-Toxizität verwendet. Ein Fluoreszenz-basierter Apoptose-Biosensor wird mit der GTD coexprimiert. Somit kann der physiologische Zustand der Schlupfdrüsenzellen überwacht werden. Das angeborene Immunsystem spielt eine entscheidende Rolle bei der Entstehung und Progression von CDI. Im zweiten Teil dieser Forschung wurde die Reaktion von Makrophagen und Neutrophilen auf eine C. difficile Infektion analysiert. Unter Verwendung des Gal4/UAS-Systems wurde eine transgene Zebrafischlinie mit Expression von gelb floureszierenden Citrin in Neutrophilen erzeugt. Um diese mit der simultanen Überwachung von Makrophagen zu kombinieren, wurde das LexA/LexAop-System zur Expression des rot floureszierende RFP-Proteins in diesen genutzt. Makrophagen und Neutrophile konnten C. difficile über Phagozytose aufnehmen. Um die Funktion von Makrophagen bei der C. difficile-Infektion zu analysieren, wurde die Zelltod-auslösende Tamoxifen-induzierbare Caspase (ATTACTM) im Makrophagenstamm coexprimiert. Die Ablations- und Regenerationskinetik von Makrophagen konnte durch Zählen der RFP-positiven Zellen charakterisiert werden. Diese Larven stellen ein Werkzeug dar, um das Fortschreiten von CDI in Gegenwart oder Abwesenheit von Makrophagen zu analysieren.

Clostridium difficile (C. difficile) infection (CDI) is an antibiotic-associated intestinal disease and is considered to be the main cause of healthcare-associated infections. The typical symptom of CDI manifests as mild to moderate diarrhea and pseudomembranous colitis. The hallmarks of the disease include neutrophil infiltration, and lesions in the colonic epithelium. C. difficile produces two major virulence factors, named TcdA and TcdB. Both toxins translocate the N-terminal glucosyltransferase domain (GTD) into the cytosol of target cells and inactivate Rho GTPases by glucosylation. This inactivation causes cell rounding, a redistribution of the actin cytoskeleton, and further an apoptotic cytotoxic effect. Although metronidazole and vancomycin remain the main drugs to treat CDI in the last three decades, new treatments or non-antibiotics agents are needed due to the emergence of hypervirulent strains. In the first part of this study, a stable transgenic zebrafish that expresses the GTD of TcdA/B under the control of a hatching gland specific enhancer was established. This model would be used for screening and identifying pharmacological substances against Tcd toxicity. Meanwhile, this zebrafish model was co-expressed a fluorescence-based apoptosis biosensor with the GTD of TcdA/B. Thus, the physiological condition of hatching gland cells was monitored by fluorescent signal. The innate immune system plays a crucial role in CDI onset and progression. In the second part of this study, the response of macrophages and neutrophils against C. difficile was analyzed. Using the Gal4/UAS system, a stable transgenic zebrafish line with expression of yellow Citrine fluorescent protein in neutrophils was generated. To combine this line for monitoring macrophages simultaneously, the binary transcriptional LexA/lexAop system was applied to express the fluorescent red tagRFP-T protein in macrophages. Both macrophages and neutrophils were able to phagocytose C. difficile. Furthermore, to unravel the function of macrophages in C. difficile elimination, Tamoxifen-inducible Caspase was co-expressed in the macrophage transgenic strain to trigger apoptosis (ATTACTM). The ablation and regeneration kinetics of macrophages were characterized by counting the number of RFP-positive cells. This model represents a tool to analyze the progression of CDI in the presence or absence of macrophages.

Related Organizations
Keywords

616, 59, Doktorarbeit, ddc:59, ddc:616

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!