
For count responses, there are situations in biomedical and sociological applications in which extra zeroes occur. Modeling correlated (e.g. repeated measures and clustered) zero-inflated count data includes special challenges because the correlation between measurements for a subject or a cluster needs to be taken into account. Moreover, zero-inflated count data are often faced with over/under dispersion problem. In this paper, we propose a random effect model for repeated measurements or clustered data with over/under dispersed response called random effect zero-inflated exponentiated-exponential geometric regression model. The proposed method was illustrated through real examples. The performance of the model and asymptotical properties of the estimations were investigated using simulation studies.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
