
arXiv: 0905.3580
We prove that the algorithm for desingularization of algebraic varieties in characteristic zero of the first two authors is functorial with respect to regular morphisms. For this purpose, we show that, in characteristic zero, a regular morphism with connected affine source can be factored into a smooth morphism, a ground-field extension and a generic-fibre embedding. Every variety of characteristic zero admits a regular morphism to a Q-variety. The desingularization algorithm is therefore Q-universal or absolute in the sense that it is induced from its restriction to varieties over Q. As a consequence, for example, the algorithm extends functorially to localizations and Henselizations of varieties.
22 pages, comments are very welcome
14E15, Resolution of singularities, marked ideal, Mathematics - Algebraic Geometry, FOS: Mathematics, canonical, 32S45, functorial, 32S15, 32S20, Algebraic Geometry (math.AG)
14E15, Resolution of singularities, marked ideal, Mathematics - Algebraic Geometry, FOS: Mathematics, canonical, 32S45, functorial, 32S15, 32S20, Algebraic Geometry (math.AG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
