Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RiuNetarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.22489/cinc....
Article . 2020 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Refined Multiscale Entropy Predicts Early Failure in Electrical Cardioversion of Atrial Fibrillation

Authors: Eva M. Cirugeda-Roldán; Sofía Calero; Víctor Manuel Hidalgo; José Enero; José Joaquín Rieta; Raúl Alcaraz 0001;

Refined Multiscale Entropy Predicts Early Failure in Electrical Cardioversion of Atrial Fibrillation

Abstract

[EN] Electrical cardioversion (ECV) is a well-established strategy for atrial fibrillation (AF) management. Despite its high initial effectiveness, a high relapsing rate is also found. Hence, identification of patients at high risk of early AF recurrence is crucial for a rationale therapeutic strategy. For that purpose, a set of indices characterizing fibrillatory (f-) waves have been proposed, but they have not considered nonlinear dynamics present at different timescales within the cardiovascular system. This work thus explores whether a multiscale entropy (MSE) analysis of the f-waves can improve preoperative predictions of ECV outcome. Thus, two MSE approaches were considered, i.e., traditional MSE and a refined version (RMSE). Both algorithms were applied to the main f-waves component extracted from lead V1 and entropy values were computed for the first 20 time-scales. As a reference, dominant frequency (DF) and f-wave amplitude (FWA) were also computed. A total of 70 patients were analyzed, and all parameters but FWA showed statistically significant differences between those relapsing to AF and maintaining sinus rhythm during a follow-up of 4 weeks. RMSE reported the best results for the scale 19, improving predictive ability up to an 8% with respect to DAF and FWA. Consequently, investigation of nonlinear dynamics at large time-scales can provide useful insights able to improve predictions of ECV failure This research was funded by the projects DPI2017-83952-C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/000411 from "Junta de Castilla La Mancha" and AICO/2019/036 from "Generalitat Valenciana".

Country
Spain
Keywords

ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES, TECNOLOGIA ELECTRONICA, Atrial Activity, Atrial fribrillation, nonlinear analysis, multiscale entropy, electrical cardioversion, refined multiscale entropy

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 36
    download downloads 64
  • 36
    views
    64
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
36
64
Green
bronze