
AbstractWe prove the existence of unique limits and establish inequalities for matrix generalizations of the arithmetic–geometric mean of Lagrange and Gauss. For example, for a matrix A = (aij) with positive elements aij, define (contrary to custom) A½ elementwise by [A½]ij = (aij)½. Let A(0) and B(0) be d × d matrices (1 < d < ∞) with all elements positive real numbers. Let A(n + 1) = (A(n) + B(n))/2 and B(n + 1 ) = (d−1A(n)B(n))½. Then all elements of A(n) and B(n) approach a common positive limit L. When A(0) and B(0) are both row-stochastic or both column-stochastic, dL is less than or equal to the arithmetic average of the spectral radii of A(0) and B(0).
Positive matrices and their generalizations; cones of matrices, Eigenvalues, singular values, and eigenvectors, Miscellaneous inequalities involving matrices, inequalities, limits, Stochastic matrices, arithmetic-geometric mean
Positive matrices and their generalizations; cones of matrices, Eigenvalues, singular values, and eigenvectors, Miscellaneous inequalities involving matrices, inequalities, limits, Stochastic matrices, arithmetic-geometric mean
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
