
handle: 20.500.11851/8358
In this paper, we present an optimization study for the terahertz Spoof Surface Plasmon Polariton waveguides (THz-SSPP WGs) for the first time in the literature. The optimization study employs a selection method for the optimum dimensions for the THz-SSPP WGs, which targets maximizing the insertion phase and minimizing the insertion loss levels, and hence, finding the optimum set of dimensions that result in the best degrees/dB performance. The method first utilizes the analytical examination of the dispersion diagram to estimate a target range of dimensions for minimum insertion loss, which is then scrutinized by numerous simulations of the THz-SSPP WGs within the selected dimension range. In order to verify the optimization method, a set of THz-SSPP WGs are designed using the proposed method, fabricated, and measured in the 0.22-0.32 THz band. The measurements result in a record-low insertion loss per unit length of 0.75 dB/mm with the optimized THz-SSPP WGs. Additionally, the utilization of the optimized THz-SSPP WGs to compose a terahertz phase shifter enables a record-high figure of merit (FoM) of 102.8 degrees/dB, which is the most fundamental performance measure of the terahertz phase shifters. It should be indicated that both insertion loss per unit length and FoM levels make THz-SSPP WGs superior to the state-of-the-art planar terahertz waveguides. The presented method provides the most concrete evidence for the potential of the planar SSPP WGs for the terahertz band.
Design, Wireless communication, Phase shifters, terahertz, Bandwidth, Phased arrays, Devices, Transmission, spoof surface plasmon polaritons, Propagation, Optimization methods, Coplanar Stripline, planar waveguides, High-Order Mode, Insertion loss, Phase measurement, Surface plasmon polaritons, 2-Bit, Efficient, Figure of merit, Lines, single-conductor waveguides
Design, Wireless communication, Phase shifters, terahertz, Bandwidth, Phased arrays, Devices, Transmission, spoof surface plasmon polaritons, Propagation, Optimization methods, Coplanar Stripline, planar waveguides, High-Order Mode, Insertion loss, Phase measurement, Surface plasmon polaritons, 2-Bit, Efficient, Figure of merit, Lines, single-conductor waveguides
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
