Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2016
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A solvable counterexample to the Hambleton-Taylor-Williams Conjecture

Authors: Semikina, Julia;

A solvable counterexample to the Hambleton-Taylor-Williams Conjecture

Abstract

I. Hambleton, L. Taylor and B. Williams conjectured a general formula in spirit of H. Lenstra for the decomposition of $G_n(RG)$ for any finite group $G$ and noetherian ring $R.$ The conjectured decomposition was shown to hold for some large classes of finite groups. D. Webb and D. Yao discovered that the conjecture failed for the symmetric group $S_5$, but remarked that it still might be reasonable to expect the HTW-decomposition for solvable groups. In this paper we show that the solvable group $\mathrm{SL}(2,\mathbb{F}_3)$ is also a counterexample to the conjectured HTW-decomposition. Furthermore, we prove that for any finite group $G$ the rank of $G_1(\mathbb{Z}G)$ does not exceed the rank of the expression in the HTW-decomposition.

12 pages; new section was added

Keywords

FOS: Mathematics, Algebraic Topology (math.AT), Mathematics - Algebraic Topology, Group Theory (math.GR), 19D99, 19B28, 20C10, Mathematics - Group Theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green