Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ New Phytologistarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
New Phytologist
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
New Phytologist
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
New Phytologist
Article . 2015
versions View all 2 versions
addClaim

Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights into ancestral plant–fungus symbioses

Authors: Christine, Strullu-Derrien; Paul, Kenrick; Silvia, Pressel; Jeffrey G, Duckett; Jean-Philippe, Rioult; Désiré-Georges, Strullu;

Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights into ancestral plant–fungus symbioses

Abstract

Summary Fungi (Eumycota) form close associations with plants, with which they have co‐existed since the dawn of life on land, but their diversity in early terrestrial ecosystems is still poorly understood. We studied petrographic sections of exceptionally well‐preserved petrified plants from the 407 million yr‐old Rhynie Chert (Scotland, UK). For comparative purposes, we illustrate fungal associations in four extant lower land plants. We document two new endophytes in the plant Horneophyton lignieri: Palaeoglomus boullardii (sp. nov. Glomeromycota) colonizes parenchyma in a discontinuous zone of the outer cortex of the aerial axes, forming arbuscule‐like structures, vesicles and spores; Palaeoendogone gwynne‐vaughaniae (gen. nov., sp. nov. Mucoromycotina) colonizes parenchyma in the basal part of the plant, where it is present in intercellular spaces and as intracellular coils but absent from rhizoids. Critical comparisons between the newly discovered Horneophyton endophytes, fungi previously described from the Rhynie Chert and fungal colonization in extant lower land plants reveal several features characteristic of both Mucoromycotina and Glomeromycota. A reappraisal of fungal associations in early land plants indicates that they are more diverse than assumed hitherto, overturning the long‐held paradigm that the early endophytes were exclusively Glomeromycota.

Keywords

Time Factors, Fungi, Extinction, Biological, Scotland, Endophytes, Embryophyta, Glomeromycota, Symbiosis, Phylogeny

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    186
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
186
Top 1%
Top 10%
Top 1%
bronze