
Given an infinite system of linear equationswhere the aij depend on a parameter λ, the eigenvalue problem is to determine values of λ for which xj (j = 1, 2, …) are not all zero. This problem (Taylor (3) and Vaughan (4)) can arise in the vibration of rectangular plates. Little theoretical work, however, appears to have been done concerning the existence and determination of the eigenvalues. The usual procedure (see (3) and (4)) is to consider a truncated or reduced system of N equations and find the values of λ for which the determinant of the N × N matrix [aij] vanishes. If a particular λ tends to a constant value as N is increased then this value is assumed to be an eigenvalue. The question therefore arises as to what happens if no limit exists. Can we assert that there are no eigenvalues? By constructing an appropriate example we show that the non-existence of a limit does not imply the non-existence of eigenvalues. In order to construct our example we first establish a result concerning the Legendre polynomials.
Numerical computation of eigenvalues and eigenvectors of matrices, Eigenvalues, singular values, and eigenvectors, Spherical harmonics
Numerical computation of eigenvalues and eigenvectors of matrices, Eigenvalues, singular values, and eigenvectors, Spherical harmonics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
