
AbstractIt has been observed by a number of researches that although it is well-known that all continuous functions defined on C-compact spaces are closed functions, this property does not characterize C-compact spaces. In this note we employ the notion of strongly subclosed relations to prove that a space is C-compact if and only if all functions on it with strongly subclosed inverses are closed functions.
``\(P\)-minimal'' and ``\(P\)-closed'' spaces, strongly subclosed relations, Maps and general types of topological spaces defined by maps, closed functions
``\(P\)-minimal'' and ``\(P\)-closed'' spaces, strongly subclosed relations, Maps and general types of topological spaces defined by maps, closed functions
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
