Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Characterizing the laulimalide–peloruside binding site using site-directed mutagenesis of TUB2 in S. cerevisiae

Authors: Peter T. Northcote; David S. Bellows; John H. Miller; David R. Maass; Paul H. Atkinson; Paul H. Teesdale-Spittle; Reem Hanna;

Characterizing the laulimalide–peloruside binding site using site-directed mutagenesis of TUB2 in S. cerevisiae

Abstract

Baker's yeast, Saccharomyces cerevisiae, has significant sequence conservation with a core subset of mammalian proteins and can serve as a model for disease processes. The aim of this study was to determine whether yeast could be used as a model system to identify new agents that interact with the laulimalide-peloruside binding site on β-tubulin. Agents that bind to this site cause stabilization of microtubules and interfere with cell division. Based on the location of the proposed laulimalide-peloruside binding site and of previously identified mutations shown to cause resistance in mammalian cells, we made the corresponding mutations in yeast and tested whether they conferred resistance to laulimalide and peloruside. Mutations A296T and R306H, which cause 6-fold and 40-fold increased resistance in human 1A9 ovarian carcinoma cells, respectively, also led to resistance in yeast to these compounds. Similarly, other mutations led to resistance or, in one case, increased sensitivity. Thus, we conclude that yeast is an appropriate model to screen for small molecule drugs that may be efficacious in cancer therapy in humans through the newly characterised laulimalide-peloruside binding site.

Related Organizations
Keywords

Binding Sites, Saccharomyces cerevisiae Proteins, Saccharomyces cerevisiae, Bridged Bicyclo Compounds, Heterocyclic, Lactones, Amino Acid Substitution, Drug Resistance, Neoplasm, Cell Line, Tumor, Mutation, Mutagenesis, Site-Directed, Humans, Macrolides, Cell Division

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!