Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2020 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2020
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MEF2c-Dependent Downregulation of Myocilin Mediates Cancer-Induced Muscle Wasting and Associates with Cachexia in Patients with Cancer

Authors: Sarah M. Judge; Michael R. Deyhle; Daria Neyroud; Rachel L. Nosacka; Andrew C. D'Lugos; Miles E. Cameron; Ravneet S. Vohra; +11 Authors

MEF2c-Dependent Downregulation of Myocilin Mediates Cancer-Induced Muscle Wasting and Associates with Cachexia in Patients with Cancer

Abstract

Abstract Skeletal muscle wasting is a devastating consequence of cancer that contributes to increased complications and poor survival, but is not well understood at the molecular level. Herein, we investigated the role of Myocilin (Myoc), a skeletal muscle hypertrophy-promoting protein that we showed is downregulated in multiple mouse models of cancer cachexia. Loss of Myoc alone was sufficient to induce phenotypes identified in mouse models of cancer cachexia, including muscle fiber atrophy, sarcolemmal fragility, and impaired muscle regeneration. By 18 months of age, mice deficient in Myoc showed significant skeletal muscle remodeling, characterized by increased fat and collagen deposition compared with wild-type mice, thus also supporting Myoc as a regulator of muscle quality. In cancer cachexia models, maintaining skeletal muscle expression of Myoc significantly attenuated muscle loss, while mice lacking Myoc showed enhanced muscle wasting. Furthermore, we identified the myocyte enhancer factor 2 C (MEF2C) transcription factor as a key upstream activator of Myoc whose gain of function significantly deterred cancer-induced muscle wasting and dysfunction in a preclinical model of pancreatic ductal adenocarcinoma (PDAC). Finally, compared with noncancer control patients, MYOC was significantly reduced in skeletal muscle of patients with PDAC defined as cachectic and correlated with MEF2c. These data therefore identify disruptions in MEF2c-dependent transcription of Myoc as a novel mechanism of cancer-associated muscle wasting that is similarly disrupted in muscle of patients with cachectic cancer. Significance: This work identifies a novel transcriptional mechanism that mediates skeletal muscle wasting in murine models of cancer cachexia that is disrupted in skeletal muscle of patients with cancer exhibiting cachexia.

Keywords

Male, Cachexia, MEF2 Transcription Factors, Diaphragm, Down-Regulation, Neoplasm Proteins, Cytoskeletal Proteins, Disease Models, Animal, Mice, Muscular Atrophy, Muscular Diseases, Body Composition, Animals, Heterografts, Humans, Female, Eye Proteins, Muscle, Skeletal, Carcinoma, Pancreatic Ductal, Glycoproteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Average
Top 10%
bronze