
AbstractIn this article, we establish a Lyapunov-type inequality for the following extremal Pucci’s equation:$$\begin{eqnarray}\left\{\begin{array}{@{}ll@{}}{\mathcal{M}}_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6EC}}^{+}(D^{2}u)+b(x)|Du|+a(x)u=0 & \text{in}~\unicode[STIX]{x1D6FA},\\ u=0 & \text{on}~\unicode[STIX]{x2202}\unicode[STIX]{x1D6FA},\end{array}\right.\end{eqnarray}$$where$\unicode[STIX]{x1D6FA}$is a smooth bounded domain in$\mathbb{R}^{N}$,$N\geq 2$. This work generalizes the well-known works on the Lyapunov inequality for extremal Pucci’s equations with gradient nonlinearity.
Mathematics - Analysis of PDEs, FOS: Mathematics, Analysis of PDEs (math.AP)
Mathematics - Analysis of PDEs, FOS: Mathematics, Analysis of PDEs (math.AP)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
