
arXiv: 1902.02465
We introduce the alternating Schur algebra $AS_F(n,d)$ as the commutant of the action of the alternating group $A_d$ on the $d$-fold tensor power of an $n$-dimensional $F$-vector space. When $F$ has characteristic different from $2$, we give a basis of $AS_F(n,d)$ in terms of bipartite graphs, and a graphical interpretation of the structure constants. We introduce the abstract Koszul duality functor on modules for the even part of any $\mathbf Z/2\mathbf Z$-graded algebra. The algebra $AS_F(n,d)$ is $\mathbf Z/2\mathbf Z$-graded, having the classical Schur algebra $S_F(n,d)$ as its even part. This leads to an approach to Koszul duality for $S_F(n,d)$-modules that is amenable to combinatorial methods. We characterize the category of $AS_F(n,d)$-modules in terms of $S_F(n,d)$-modules and their Koszul duals. We use the graphical basis of $AS_F(n,d)$ to study the dependence of the behavior of derived Koszul duality on $n$ and $d$.
27 pages, 1 figure, to appear in Pacific Journal of Mathematics
Representation theory for linear algebraic groups, Schur algebra, 20G43, 20G05, 05E10, Combinatorial aspects of representation theory, Schur-Weyl duality, Koszul duality, FOS: Mathematics, Representation Theory (math.RT), alternating group, Schur and \(q\)-Schur algebras, Mathematics - Representation Theory
Representation theory for linear algebraic groups, Schur algebra, 20G43, 20G05, 05E10, Combinatorial aspects of representation theory, Schur-Weyl duality, Koszul duality, FOS: Mathematics, Representation Theory (math.RT), alternating group, Schur and \(q\)-Schur algebras, Mathematics - Representation Theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
