Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Monthly Notices of the Royal Astronomical Society
Article . 2017 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The AMBRE project: chemical evolution models for the Milky Way thick and thin discs

Authors: Alejandra Recio-Blanco; V. Grisoni; P. de Laverny; Michael R. Hayden; Ŝ. Mikolaitis; Ŝ. Mikolaitis; E. Spitoni; +3 Authors

The AMBRE project: chemical evolution models for the Milky Way thick and thin discs

Abstract

We study the chemical evolution of the thick and thin discs of the Galaxy by comparing detailed chemical evolution models with recent data from the AMBRE Project. The data suggest that the stars in the thick and thin discs form two distinct sequences with the thick disc stars showing higher [��/Fe] ratios. We adopt two different approaches to model the evolution of thick and thin discs. In particular, we adopt: i) a two-infall approach where the thick disc forms fast and before the thin disc and by means of a fast gas accretion episode, whereas the thin disc forms by means of a second accretion episode on a longer timescale; ii) a parallel approach, where the two discs form in parallel but at different rates. By comparing our model results with the observed [Mg/Fe] vs. [Fe/H] and the metallicity distribution functions in the two Galactic components, we conclude that the parallel approach can account for a group of ��-enhanced metal rich stars present in the data, whereas the two-infall approach cannot explain these stars unless they are the result of stellar migration. In both approaches, the thick disc has formed on a timescale of accretion of 0.1 Gyr, whereas the thin disc formed on a timescale of 7 Gyr in the solar region. In the two-infall approach a gap in star formation between the thick and thin disc formation of several hundreds of Myr should be present, at variance with the parallel approach where no gap is present.

12 pages, 10 figures. Accepted for publication in MNRAS

Country
Italy
Keywords

Galaxy: abundance, Galaxy: evolution, Galaxy: formation, Astrophysics of Galaxies (astro-ph.GA), FOS: Physical sciences, Galaxy: abundances; Galaxy: evolution; Galaxy: formation, Astrophysics - Astrophysics of Galaxies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    95
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
95
Top 1%
Top 10%
Top 1%
Green
gold