Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Annals of Probab...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Annals of Probability
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Project Euclid
Other literature type . 1983
Data sources: Project Euclid
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
The Annals of Probability
Article . 1983 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Approximating IMRL Distributions by Exponential Distributions, with Applications to First Passage Times

Approximating IMRL distributions by exponential distributions, with applications to first passage times
Authors: Brown, Mark;

Approximating IMRL Distributions by Exponential Distributions, with Applications to First Passage Times

Abstract

It is shown that if $F$ is an IMRL (increasing mean residual life) distribution on $\lbrack 0, \infty)$ then: $\max\{\sup_t |\bar F(t) - \bar G(t)|, \sup_t|\bar F(t) - e^{-t/\mu}|, \sup_t|\bar G(t) - e^{-t/\mu}|, \\ \sup_t |\bar G(t) - e^{-t/\mu_G}|\} = \frac{\rho}{\rho + 1} = 1 - \frac{\mu}{\mu_G}$ where $\bar F(t) = 1 - F(t), \mu = E_FX, \mu_2 = E_FX^2, G(t) = \mu^{-1} \int^t_0 \bar F(x) dx, \mu_G = E_GX = \mu_2/2\mu$, and $\rho = \mu_2/2\mu^2 - 1 = \mu_G/\mu - 1$. Thus if $F$ is IMRL and $\rho$ is small then $F$ and $G$ are approximately equal and exponentially distributed. IMRL distributions with small $\rho$ arise naturally in a class of first passage time distributions for Markov processes, as first illuminated by Keilson. The current results thus provide error bounds for exponential approximations of these distributions.

Keywords

62E10, Applications of renewal theory (reliability, demand theory, etc.), approximate exponentiality, Asymptotic distribution theory in statistics, Markov processes, first passage times, reliability theory, inequalities, Characterization and structure theory of statistical distributions, IMRL distributions, increasing mean residual life distribution, first passage times, 60K10, asymptotic exponentiality

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Top 10%
Top 10%
Green
hybrid